Contamination-Free Graphene Transfer from Cu-Foil and Cu-Thin-Film/Sapphire

نویسندگان

  • Jaeyeong Lee
  • Shinyoung Lee
  • Hak Ki Yu
چکیده

The separation of graphene grown on metallic catalyst by chemical vapor deposition (CVD) is essential for device applications. The transfer techniques of graphene from metallic catalyst to target substrate usually use the chemical etching method to dissolve the metallic catalyst. However, this causes not only high material cost but also environmental contamination in large-scale fabrication. We report a bubble transfer method to transfer graphene films to arbitrary substrate, which is nondestructive to both the graphene and the metallic catalyst. In addition, we report a type of metallic catalyst, which is 700 nm of Cu on sapphire substrate, which is hard enough to endure against any procedure in graphene growth and transfer. With the Cr adhesion layer between sapphire and Cu film, electrochemically delaminated graphene shows great quality during several growth cycles. The electrochemical bubble transfer method can offer high cost efficiency, little contamination and environmental advantages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene grown by chemical vapor deposition on evaporated copper thin films

Graphene is a thin atomic layer of carbon atoms which has a hexagonal lattice structure. Due to its exceptional properties such as high electrical conductivity, high carrier mobility, high thermal conductivity, high optical transparency and super hydrophobicity, graphene is expected to play an important role in future nanoscience and nanotechnology. Chemical vapor deposition (CVD) is a novel te...

متن کامل

Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering

Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu t...

متن کامل

Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer

The mechanisms by which chemical vapor deposited (CVD) graphene and hexagonal boron nitride (h-BN) films can be released from a growth catalyst, such as widely used copper (Cu) foil, are systematically explored as a basis for an improved lift-off transfer. We show how intercalation processes allow the local Cu oxidation at the interface followed by selective oxide dissolution, which gently rele...

متن کامل

Graphene Crystal Growth Engineering on Epitaxial Copper Thin Films

In this work 1 , we study graphene growth dynamics on epitaxial Cu thin film substrates by chemical vapor deposition (CVD). These surfaces have a single crystallographic orientation and are atomically smooth, unlike their foil counterparts, making them better platforms on which to reproducibly synthesize highquality graphene and study crystal growth evolution. Consequently, we gained novel insi...

متن کامل

The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties.

High quality graphene films can be fabricated by chemical vapor deposition (CVD) using Ni and Cu as catalytic substrates. Such a synthesis procedure always requires a subsequent transfer process to be performed in order to eliminate the metallic substrate and transfer the graphene onto the desired surface. We show here that such a transfer process causes significant contamination of the graphen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017